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1 Introduction

The idea of the “attractor mechanism” [1, 2] was firstly applied in the context of supergrav-

ity. Later it was reinterpreted to calculate the entropy of extremal black holes (BH) [3].

Many articles already have been published in which this method has been used successfully

in different contexts [4–6]. The popularity of this idea possibly follows from the simplicity of

the entropy function method. The fact that the geometry near the horizon implies that all

scalar fields and sources take constant values, is perhaps, among its properties, what makes

this method easier to apply. This idea is consistent with the so-called “attractor mechanics”

for supersymmetric backgrounds, in which BH configurations near the horizon depend only

on the electric and magnetic charge carried by the BH, and not on the asymptotic values

of the corresponding scalar field [3]. Indeed, by using the entropy function mechanism, the

entropy in the proximity of the BH horizon can be regarded as the Legendre transforma-

tion of specific suitable parameters. Since the entropy will depend on these charges, it is

important to emphasize that the entropy function formalism computes the entropy of an

extremal BH as the entropy of a non-extremal BH in the limit as we approach the horizon.

In d dimensions and near the horizon, the geometry of a spherically symmetric and

extremal BH implies that the isometry group has the SO(1, 2) × SO(d − 1) form [7–9].

This follows from the fact that near the horizon the metric has the Robinson-Bertotti(RB)

form AdS2 × Sd−2 [10, 11]. If we assume that the addition of higher derivative terms in

the action do not destroy the RB geometry near the horizon, then we could consider this

metric as valid in general, even for dimensions larger than four. It is worth noting that
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the RB solution is not asymptotically flat, as it is the product of two spaces [12]: the

anti-de Sitter AdS space and the sphere S. In d = 4 both are two-dimensional spaces

with the same curvature constants, 2/R2
AdS, but with different sign, with the AdS space

having negative curvature and being invariant with respect to the isometry group SO(1, 2),

while S2 is the two-dimensional sphere with positive curvature and invariant with respect

to the group SO(3). Since the RB group of symmetry is bigger than the isometry group

SO(1, 1) × SO(3) of the extremal Reissner Nordstrom (RN), the consequent symmetry

increase makes it possible to consider the RB space as a vacuum state for this theory,

similar to a Minkowski vacuum [13]. In this sense, the extremal RN black hole at infinity

is asymptotically flat (i.e. Minkowski), but near the horizon the geometry is described by

the RB metric. Therefore, the extremal RN BH can be seen as a gravitational soliton.

This interpretation is closely related to the recent discovery of AdS/CFT correspondence,

in which the AdS gravity can be linked with gauge theories defined on the AdS boundary.

In this paper we obtain the entropy of extremal and static BH taking into account

higher derivative terms. The inclusion of these terms in theories of high order gravity can

be done, for example, using the terms of Gauss-Bonnet(GB) [16–18]. These terms could

also appear in various situations, such as string theories, branes [19–21] and semiclassical

quantum gravity. In particular, higher derivative terms appear in string theories when

the effective low-energy limit is evaluated. It is well-known that in higher order gravity

problems associated with renormalization may occur. In the particular case of GB gravity,

the action formed by three second order invariants insure the elimination of these renor-

malization problems, though other problems come up, such as the emergence of ghost fields

(i.e. massive particle with spin two). The discussion of these problems is beyond the scope

of this article, though a good review on these issues can be found in [14] and [15].

The main objective of this paper is to present a set of approximate solutions for the

entropy of extremal BH’s near the horizon of geometry in d = 4 and d = 5 dimensions. To

this end we used Sen’s mechanism, the initial condition derived from the Einstein-Maxwell

theory with cosmological constant, as well as a complete set of Riemann invariants. It is

important to point out that in the cases when the equations of motion near the BH horizon

cannot be solved analytically, we can attempt to construct an iterative power series in the w

parameter inversely to the BH charge. On the other hand, in order to include the Riemann

set of invariants as corrections of higher derivatives, we have to considere the complete

set of invariants defined by Carminati and McLenaghan (CM) [22], plus the m6 invariant

introduced by Zakhary and McIntosh [23].

The CM invariants are scalars built from the Riemann tensor Rabcd, the Weyl tensor

Cabcd (and its dual) and the trace-free Ricci tensor, defined as Sab = Rab − (1/d)R gab

(in d-dimensions), leading to six real scalars R, r1, r2, r3,m3,m4 and five complex scalars

w1, w2,m1,m2,m5, making a total of sixteen invariant scalars (we notice that r, w and

m are respectively associated with Riemann, Weyl and mixed invariants). The CM set

of scalars yields the required number of invariants for the Einstein-Maxwell and perfect

fluid cases. Furthermore, by including the m6 invariant, it has been proven that the CM

set becomes a complete set, as it covers the 90 possible cases (6 Petrov types × 15 Segre

types) [23]. In other words, a complete set of invariants should contain (at least for d = 4

spacetimes) the already well-known physical invariants, as well as the geometric ones.
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Invariants Definitions
Solutions Solutions

d = 4 d = 5

R gadgbcRabcd 2 γ1 2γ3

r1 = R2
1
4S b

a S a
b

1
4γ2

2
3
10γ2

4

r2 = R3 −1
8S b

a S c
b S a

c 0 3
102 γ3

4

r3 = R4
1
16S b

a S c
b S d

c Sa
d

1
64γ4

2
21
103 γ4

4

Re(w1)=Re(W2)
1
8CabcdC

abcd 1
6γ2

1 −
Re(w2)=Re(W3) − 1

16C cd
ab C ef

cd C ab
ef

−1
36 γ3

1 −
Re(m1)=Re(M3)

1
8SabScdCacdb

−1
12 γ1γ

2
2 −

Re(m2)=Re(M4)
1
16ScdSef(CacdbC

aefb − C∗
acdbC

∗aefb) 1
36γ2

1γ2
2 −

m3 = M+
4

1
16ScdSef(CacdbC

aefb + C∗
acdbC

∗aefb) 1
36γ2

1γ2
2 −

Re(m5)=Re(M5)
1
32ScdSefCaghb(CacdbCgefh + C∗

acdbC
∗
gefh) −1

108γ3
1γ2

2 −

where :
γ1 =(v1−v2)/v1v2, γ2 =(v1+v2)/v1v2,

γ3 =(3v1−v2)/v1v2, γ4 =(2v1+v2)/v1v2

Table 1. Table of definitions for the complete set of Riemann invariants and the results for the

AdS2 ×Sd−2 geometry near the BH horizon in d = 4 and d = 5 (the rest of the invariants are zero).

All the definitions are based on the trace-free Ricci tensor Sa b, the Weyl tensor Cabcd and the

Riemann tensor Rabcd. Although, these invariants can also be defined on a spinor base [22]. Here

“-” means that there is no invariant definition available in five dimensions for the set of complex

invariants. We use small letters for the invariants of Carminati [22], but in the Lagrangean we use

upper case letters. The Re symbol means real part of the complex invariant. In order to remark

the tensor degree (instead of Carminati subindex) we have written the tensor degree number as a

subindex (i.e. Re(W2) means the real part of the second degree complex Weyl invariant w1).

In table 1 we show the definitions and results for the set of non-null invariants for

the case of AdS2 × Sd−2 geometry in d = 4 and d = 5. It is important to point out that

for d = 5 it is not possible to calculate the complex Riemann invariants, as they are yet

unknown. Additional invariants may be required for a more general spacetime like the

d = 5 case. The question of how many invariants are necessary to obtain a complete set,

for d > 4 is an open problem. Likewise, the invariants in table 2 are organized by their

respective degree. Following the definitions given in [23], the j − th invariant Ip
j is called

the invariant of order p, and then if other invariant exists that can be written in the form

Ip
j Iq

kIr
l , it is said to be an invariant of order p− q − r and the sum p + q + r is his degree.

For example, in table 1 the invariant Re(m1), which denotes the real part of the invariant

m1, is of order 1 − 2 and has third-degree. Thus, the invariant Ip
j will be independent if it

can not be written in terms of other invariants, either of equal or lower degree. Also, two

invariants are said to be equivalent if they can be written in terms of each other, or as the

product of other invariants of lower degree. The equivalence relations (syzygies) are also

given in table 2. It is easy to see that in d = 4 and d = 5 all the invariants can be written

in terms of the R, r1 and r2 invariants.
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d Degree Invariants
Equivalence

relations

d=4

1st R = 2γ1 γ1

2nd R2 = 4γ2
1 , R2 = 1

4γ2
2 , Re(W2) = 1

6γ2
1 , γ2

1 , γ2
2

3rd R3 =8γ3
1 , R×R2 = 1

2γ1γ
2
2 , R×Re(W2) = 1

3γ3
1 ,

γ3
1 , γ1γ

2
2

Re(W3) = −1
36 γ3

1 , Re(M3) = −1
12 γ1γ

2
2

4th

R4 = 16γ4
1 , Re

2(W2) =
γ4

1

36 , R2 × R2 = γ2
1γ2

2 ,

γ4
1 , γ4

2 , γ2
1γ2

2

R2
2 = 1

16γ4
2 , R2 × Re(W2) = 2

3γ4
1 ,

R2×Re(W2)=
1
24γ2

1γ2
2 , Re(M4)=M+

4 = 1
36γ2

1γ2
2 ,

R × Re(W3) =
−γ4

1

18 , R × Re(M3) =
−γ2

1
γ2

2

6 ,

R4 = 1
64γ4

2 ,

5th

R5 =32γ5
1 , R3×R2 =2γ3

1γ2
2 , R3×Re(W2)=

4
3γ5

1 ,

γ5
1 , γ1γ

4
2 , γ3

1γ2
2

R2 × Re(W3) = −γ5

1

9 , R2
2 × R =

γ1γ4

2

8 ,

R2 × Re(M3) = −γ3

1
γ2

2

3 , R × Re
2(W2) =

γ5

1

18 ,

R × R2 × Re(W2) =
γ3

1
γ2

2

12 ,

R2 × Re(W3) =
−γ3

1
γ2

2

144 , R2 × Re(M3) =
−γ1γ4

2

48 ,

Re(W2)×Re(M3)=
−γ3

1
γ2

2

72 , Re(W2)×Re(W3)=
−γ5

1

216 ,

R × R4 =
γ1γ4

2

32 , R × Re(M4) = R × M+
4 ≡ γ3

1
γ2

2

18

d=5

1st R = 2γ3 γ3

2nd R2 = 4γ2
3 , R2 = 3

10γ2
4 γ2

3 , γ2
4

3rd R3 = 8γ3
3 , R × R2 = 3

5γ3γ
2
4 , R3 = 3

100γ3
4 γ3

3 , γ3γ
2
4 , γ3

4

4th R4 = 16γ4
3 , R2

2 = 9
100γ4

4 , R2 × R2 = 6
5γ2

3γ2
4 , γ4

3 , γ4
4 , γ2

3γ2
4 ,

R × R3 = 3
50γ3γ

3
4 , R4 = 21

103 γ4
4 γ3γ

3
4

where:
γ1 =(v1−v2)/v1v2, γ2 =(v1+v2)/v1v2,

γ3 =(3v1−v2)/v1v2, γ4 =(2v1+v2)/v1v2

Table 2. The complete set of not null invariants is provided, organized by degrees for d = 4 and

d = 5 dimensions on AdS2 × Sd−2 geometry.

It is important to remark that all the non-zero invariants are taken into account in our

calculations. The remaining null invariants are not included in the table 1–2. Naturally,

an important issue may arise in these tables, namely: why there are no invariants or higher

order terms of a gauge theory given the fact that we have started from an Einstein-Maxwell

theory where a gauge is contained? The answer to this question is that, for simplicity, we

have not considered in this paper terms such as (FµνFµν)2, Fµ
ν F ν

ρF
ρ
σF σ

µ, R F 2,. . . , nor

covariant Fµν�Fµν ,. . . , nor invariants of forms. Hence, just the purely gravitational sector

of the theory is considered in the CM set. All calculations were carried out with the tensor

package GRTensor running on the algebraic computing program Maple.

This paper is organized in six sections. In section II the generalized theory for d = 4

and d = 5 is written with higher derivative terms built from the set of Riemann invariants.

– 4 –
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The analytic solution in d = 4 for invariants of second degree is obtained in section III. Ap-

proximate solutions for d = 4 of the complete set of Riemann invariants are also examined

in section III. Analytic and approximate solutions are provided in section IV for d = 5. The

generic GB case is shortly treated in section V. We present our conclusion in section VI,

while the tables 1–2 provide the set of Riemann invariants for an extreme BH background.

2 Generalized theory in 4 and 5 dimensions

We consider in this section a higher order theory of gravity by introducing the complete set

of non-null Riemann invariants as the higher derivative terms of the theory. We construct

then the Einstein-Maxwell action with cosmological constant and the additional higher

derivative terms like,

S =
1

16πGd

∫
dxd√−g

(
R + Λ − F 2

4
+ Ld

inv

)
, (2.1)

where:

Ld=4
inv = a2R

2 + b2R2 + a3R
3 + b3R R2 + a4R

4 + b4R
2
2 + c4R

2 R2 + a5R
5 + b5R

3 R2 ,

Ld=5
inv = a2R

2 + b2R2 + a3R
3 + b3R R2 + c3R3 + a4R

4 + b4R
2
2 + c4R

2 R2 + e4R R3 .

with Gd being the d-dimensional Newton constant, R the Ricci scalar, Λ the cosmological

constant, Fµν the electromagnetic tensor, and F 2 = FµνFµν , R2 and R3 the two first real

Riemann invariants defined in table 1 for the metric (2.2). The parameters ai, bi, ci, ei . . .

are the coupling constants for each higher derivative term of i-th degree. The label Ld
inv

denotes the higher derivative terms with which we will shall work. In both cases d = 4 and

d = 5 the invariant terms inside Ld
inv form a complete set, therefore we added all possible

higher derivative terms until the highest degree.1 The most general spacetime for a static

and extremal BH with AdS2 × Sd−2 topology near the horizon of geometry is:

ds2 = v1

(
−r2dt2 +

dr2

r2

)
+ v2dΩd−2, (2.2)

eaIΨI |H = uI , F d
0r = e, F d=4

θφ = p sin θ, F d=5
θφ = 0, (2.3)

dΩ2
d−2 = dθ2

1+
d−2∑

i=2

i−1∏

j=1

sin2 θjdθ2
i , 0≤θi≤π, 0≤θd−2≤2π, (1≤ i≤d−3). (2.4)

where e and p are functions related to the electric and magnetic charges, while the v1 and

v2 are functions connected with the BH throat. The constants ui are the values of the

scalars fields Ψi on the BH horizon, if these fields are present (we assume ui = 0). We shall

follow in this paper the formalism of Sen [3], in which the entropy function E is defined as:

E(~u,~v,~e, ~q, ~p) = 2π(eiqi − f(~u,~v,~e, ~p)). (2.5)

1By “the highest degree” we refer to the highest degree within the complete set of Carminati-

McLenagham invariants inside the sector of pure gravity.

– 5 –
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and f(~u,~v,~e, ~p) is the Lagrangian density
√
−det gL, evaluated near the horizon of this

geometry. All these parameters can be determined by extremizing the entropy function:

∂E
∂ui

=
∂E
∂vj

=
∂E
∂e

= 0, i = 1 . . . N, j = 1 . . . 2. (2.6)

The last set of equations are the equations of motion near the horizon of the extremal

background (2.2). Thus, the BH entropy at the extremal limit follows after solving the

system of equations (2.6) and substituting these parameters in the entropy function. The

result shows that SBH/2π may be regarded as the Legendre transform of the function

f(−→u ,−→v ,−→e ,−→p ), with respect to the variables ei. In the following section the second order

contributions are obtained.

3 Case d=4

3.1 Analytic Solutions for invariants of second degree in d = 4

The calculation of second order contributions to the extremal BH entropy is equivalent to

considering invariants of second degree. On the basis of the correspondence principle, the

Gauss-Bonnet(GB) solutions should be contained in these results [16], as well as the classic

Reissner-Nordstrom (RN) solution that was obtained through the area law. In this case,

we should take ai = bi = ci = 0 for i ≥ 3 in (2.1), and then the function f(~v,~e, ~p) will be,

f(v1, v2, e, p) =

∫

S2

√−g

(
R + Λ − F 2

4
+ a2R

2 + b2R2

)
dθdφ. (3.1)

while the entropy function will take the form:

E(v1, v2, e, q, p) =

{
2 qeG4 + 2

(
2 − v1

v2
− v2

v1

)
a2 +

(
− v1

8v2
− v2

8v1
− 1

4

)
b2 +

+

(
p2

2v2
− 2 − v2 Λ

)
v1

2
− v2 e2

4v1
+ v2

}
π

G4
. (3.2)

From the equations of motion (2.6) we obtain the system:

2 q − v2 e

2v1G4
= 0, (3.3)

v1Λ

2
− 1 + 2

a2

v1
− 2

v1 a2

v2
2

+
b2

8v1
− v1 b2

8v2
2

+
e2

4v1
+

v1 p2

4v2
2

= 0, (3.4)

−v2
Λ

2
− 1 + 2

v2 a2

v1
2

− 2
a2

v2
+

v2 b2

8v1
2 − b2

8v2
+

v2 e2

4v1
2 +

p2

4v2
= 0. (3.5)

Notice that when we solve the system of equations above, all its solutions can be

written in terms of the function v2 as follows,

v1 =
v2

v2 Λ + 1
, q =

f

8G4
, e =

f

2(v2 Λ + 1)
, (3.6)

f =
√

8 (Λv2 + 2)v2 − 2(16 a2 + b2) (v2Λ + 2)v2Λ − 4 p2 .

– 6 –
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and the entropy for an extremal and static BH (taking into account invariants of second

degree) will be:

SBH =

(
1 − (16 a2 + b2) Λ

4

)
πv2

G4
− π b2

2G4
. (3.7)

The GB solution that was found by Morales and Samtleben in [16] can then be obtained

substituting b2 = −8α, and a2 = α/2 in (3.7), thus:

SGB = (v2 + 4α)
π

G4
. (3.8)

where the parameter α is the GB coupling constant. Similarly, if we take a2 = b2 = 0

in (3.7), the entropy becomes the well-known RN black hole entropy in the extremal limit

and with magnetic charge p:

SBH|a2=b2=0 =
πv2

G4
≡ Sd=4

RN . (3.9)

The variables v1, e and q become,

v1 =
v2

v2 Λ + 1
, q =

√
2 (Λv2 + 2)v2 − p2

4G4
, e =

√
2 (Λv2 + 2)v2 − p2

v2 Λ + 1
. (3.10)

where it is straightforward to see (from (3.7)) that the cosmological constant by itself does

not change the Bekestein-Hawking area law, since it needs to be accompanied by higher

derivative terms of at least of second degree. In fact, the cosmological constant Λ just

changes the geometry of the throat (see (3.6), (3.10)). However, the constants a2 and

b2 in (3.7) represent the deviation from this law. In the following section approximated

solutions for higher order gravity are obtained, as well as the R3, R4 and R5 contributions.

3.2 Approximated solutions for the complete set of invariants in d = 4

Due to the non-linearity of Einstein-Maxwell equations it is very difficult to find exact an-

alytic solutions with higher derivative terms. In most cases, some approximation methods

must be employed or solutions must be found numerically. If we consider the complete

set of invariants, we cannot find the solutions of the system of motion equations (2.6) in

explicit form. In order to solve this problem we shall introduce the parameter w and make

suitable expansions around it. Indeed, w in (2.1) can always be extracted from the coupling

constants ai, bi, ci, ei by rescaling. Though, we should take into account that w must be

extracted with the appropriate order. Since RN solutions (case Linv = 0) are well known

analytically, the first coupling constants for invariants of higher degree are a2 and b2. As

a consequence: a2, b2 ⇒ w a2, w b2, . . . and in general, we have:

al, bm, cn, ep =⇒ wl−1al, w
m−1bm, wn−1cn, wp−1ep, l,m, n, p = 2, 3, 4, 5, . . . . (3.11)

The expansion parameter w can be considered as the inverse function of the charge, which

is zero to leading order. This is the form in which w should appear in the entropy function

E . Since we are mainly interested in approximate solutions, then we should build series

– 7 –
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expansions of the functions e, q and v1. In general, any of these functions can be expanded

in series around the parameter w as:

h(w) =

∞∑

k=0

wk

k!

(
∂kh

∂wk

)

w=0

. (3.12)

This expansion allows us to write:

e ≃ e0 + w∆e1 + w2∆e2 + w3∆e3 + . . . ,

q ≃ q0 + w∆q1 + w2∆q2 + w3∆q3 + . . . ,

v1 ≃ v1 0 + w∆v1 1 + w2∆v1 2 + w3∆v1 3 + . . . ,

E ≃ E0 + w∆E1 + w2∆E2 + w3∆E3 + . . . (3.13)

where in (3.13) we have taken ∆hk = (1/k!)(∂kh/∂wk)
w=0

. Consequently, w fixes the

level of approximation, so that when w = 0 we have solutions of order zero that will be

the RN set (3.9)–(3.10). Finally, by including the complete set of invariants (i.e. in (2.1)

all terms are taken completely), or the contributions of higher derivative terms up to fifth

degree for extremal BH entropy, the approximation at different levels will be:

SBH = Sd=4
RN +

(
S

(2)
BH + S

(3)
BHw + S

(4)
BHw2 + S

(5)
BHw3

)
w + O(w5), (3.14)

where:

S
(2)
BH = −

(
(16 a2 + b2)

Λ

4
v2 +

b2

2

)
π

G4
, (3.15)

S
(3)
BH =

(
12Λ2v2 a3 +

(
3

4
v2Λ

2 + 2Λ +
1

v2

)
b3

)
π

G4
, (3.16)

S
(4)
BH = −

{
32 v2 Λ3 a4 +

(v2 Λ + 2)3 b4

8v2
2

+
2Λ (v2 Λ + 2) (v2 Λ + 1) c4

v2
+ (16a2 + b2) ×

×
(

Λ (v2Λ + 2)2 b3

16v2
+ v2a3Λ

3

)}
π

G4
, (3.17)

S
(5)
BH =

{
80v2Λ

2a5+

(
5v2Λ

2+16Λ+
12

v2

)
b5+96v2Λ

2a2
3+4

(
6

v2
+3v2Λ

2+8Λ

)
a3b3 +

+
(3v2Λ+4)(v2Λ+2)2

8Λv2
2

b2
3+(16a2+b2)

(
4Λ2a4v2+

(v2Λ+2)2c4

4v2
+

(v2Λ+2)4b4

64Λ2v3
2

)}
πΛ2

G4
.

(3.18)

If we consider an effective theory where just invariants of third degree are required, then

we should take in (2.1), (3.18) the constants with values aj = bj = cj = ej = 0 for

j ≥ 4, and then the entropy solutions for extremal BH at a linear approximation is sim-

ply: SBH = SRN + (S
(2)
BH + S

(3)
BHw)w + O(w3). The same can be done for fourth degree.

We can consider this approach more than enough because the analytical solution of sec-

ond degree (3.7) is exactly reproduced in (3.15). Note that each entropy contribution of

invariants of i − th degree is labeled as S(i), then the super-indices (i) just indicate the

– 8 –
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degree of the invariants that produced it and not the approximation order. Note that we

have not written the solutions for e, q and v1, because they are too long to be written in

a paper. In the set of approximated solutions the non-linear terms with respect to the

coupling constants appear in S
(4)
BH and S

(5)
BH with contributions like a2a3, a2b3, b2a3, b2b3 and

a2
3, a3b3, b

2
3, a2a4, a2c4, a2b4, b2a4, b2c4, b2b4 respectively.

4 Case d=5

4.1 Analytic Solutions for invariants of second degree in d = 5

In this case, the function f(~v,~e, ~p) takes the same form as (3.1), but the integration is

carried on over S3, hence the entropy function is given by:

E(v1, v2, e, q, p) = 2π qe − π2 (3 v1 − v2)
2 a2

G5 v1
√

v2
− 3

40

π2 (2 v1 + v2)
2 b2

G5 v1
√

v2
−,

−
√

v2

(
2v1v2(Λv1 − 2) + e2v2 + 12 v1

2
)
π2

8G5 v1
. (4.1)

Since the system of equations of motion (2.6) near the horizon are:

0 =
π (3v1 + v2) (3v1 − v2) a2√

v2v1
2

+
3π (2v1 − v2) (2v1 + v2) b2

40
√

v2v1
2

− π
√

v2

(
−12v1

2 − 2Λv1
2v2 + e2v2

)

8v1
2

,

0 =
3π (v1+v2) (3v1−v2) a2√

v2v1
2

+
3π (2v1+v2) (2v1−3v2) b2

40
√

v2v1
2

− 3π
√

v2

(
2v2

1(2+Λv2)+v2(e
2−4v1)

)

8v1
2 ,

0 = q − π v2
3

2 e

v1 8G5
, (4.2)

this system can be solved explicitly, and then the functions e, v1 and q can be written in

terms of v2 as:

v1 =
v2 (5 v2 + 20a2 − b2)

60a2 + 2 b2 + 5v2(4 + v2Λ)
, (4.3)

q =
π
√

v2 f̃

8 (5v2 + 20a2 − b2)G5
, e =

f̃

20v2 + 60a2 + 2b2 + 5v2
2Λ

. (4.4)

and,

f̃ =
√

5
(
v2

2Λ + 20a2 + 6v2

) 1

2

(
10v2

2 − 60a2b2 − 40a2v
2
2Λ − 2b2

2 − 3b2v
2
2Λ − 10b2v2

) 1

2 .

Therefore, the entropy of a static and extremal BH in d = 5, with higher derivative terms

of second degree taken into account, has the form:

SBH =
π2v2

5

2 (40a2 + 3b2) Λ

4 (−5v2 − 20 a2 + b2) G5
+

5π2v
1

2

2

(
−v2

2 + 10a2b2 + 2b2v2

)

2 (−5v2 − 20a2 + b2) G5
. (4.5)

Likewise, the extremal Gauss-Bonnet solution shown in [16] can be obtained with the

substitutions: b2 = −8α, and a2 = 3
5α, in the solution (4.5), leading to:

SGB = (v2 + 12α)
π2v2

1

2

2G5
. (4.6)
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This does not happen for a more general GB contribution (see next section). In general,

establishing a relation between the GB’s solutions and the solutions of second degree re-

quires a constraint.

If a2 = b2 = 0 in (4.5), the well-known extremal RN solution is also obtained:

SBH|a2=b2=0 =
π2v

3

2

2

2G5
≡ Sd=5

RN . (4.7)

As with the solution (3.7), the cosmological constant does not change the entropy of a BH by

itself: it would need the higher derivative terms. A proof of this follows from taking Λ = 0

in (4.5), so that the contributions of a2 and b2 remain. These contributions also produce a

marked deviation from the area law. Note that, contrary to the d = 4 case, not only the cos-

mological constant modifies the geometry of the BH throat (see (4.3)), but the coupling con-

stants associated to the invariants of second degree increase its effect on the throat topology.

4.2 Approximated solutions for the complete set of invariants in d = 5

As in section 3.2, we can construct approximated solutions in five dimensions. Thus,

considering the extremal BH entropy in which the complete set of Riemann invariants (i.e.

in (2.2) has been taken into account, the coupling constant aj , bj , cj , ej 6= 0) at different

levels of approximation take the form:

SBH = Sd=5
RN +

(
S

(2)
BH + S

(3)
BHw + S

(4)
BHw2

)
w + O(w4). (4.8)

where:

S
(2)
BH = −

(
2 (1 + Λ v2) a2 +

3

20
(6 + Λ v2) b2

)
π2v

1

2

2

G5
, (4.9)

S
(3)
BH =

{
6 (1 + Λ v2)

2 a3 +
3

20
(6 + Λ v2) (3 Λ v2 + 8) b3 −

9

400
(6 + Λ v2)

2 c3 +

+8(1 + Λv2)a
2
2 + (−9 + v2Λ)

a2b2

5
− 3

100
(v2Λ + 6)b2

2

}
π2

v
1

2

2 G5

, (4.10)

S
(4)
BH = −

{
16 (1 + Λ v2)

3
a4 +

9

100
(6 + Λ v2)

3
b4 +

3

5
(6 + Λ v2) (2 Λ v2 + 7) (1 + Λ v2) c4 −

− 3

200
(4 Λ v2 + 9) (6 + Λv2)

2
e4 − 32(1 + v2Λ)a3

2 +
4

5
(11 + v2Λ)b2a

2
2 + (9 + 4v2Λ)

a2b
2
2

25

−8(10 + v2Λ)(1 + v2Λ)2a2a3 − (270 + 248v2Λ + 3v3
2Λ

3 + 56v2
2Λ

2)
a2b3

5
+

+
3

100
(v2Λ + 6)(v2

2Λ2 + 16v2Λ + 30)a2c3 −
3

500
(v2Λ + 6)b3

2 −
3

5
(1 + v2Λ)(v2Λ + 5) ×

×(v2Λ−4)a3b2 −
3

200
(v2Λ+6)(3v2

2Λ
2+8v2Λ−20)b2b3+

9Λv2

4000
(v2Λ+6)2b2c3

}
π2

G5v2
3

2

.

(4.11)

It is straightforward to notice that if equation (4.5) is expanded in series up to second order

of v−1
2 , then equation (4.9) is reproduced. If we take a2 = 3

5α and b2 = −8α in (4.9) the

– 10 –
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GB solution (4.6) is obtained. In this case, the non-linear contributions of the coupling

constants appear in S
(3)
BH and S

(4)
BH as combinations of coupling constants of smaller order like

a2
2, a2b2, b

2
2, and a3

2,. . . etc. Note that the absent terms a2
2, a2b2 and b2

2 in (3.16) in contrast

with (4.10) is simply a result of the calculation. The same happen in (3.17) and (4.11)

with the terms, a3
2, b2a

2
2, a2b

2
2, b

3
2.

5 Riemann invariants and generic Gauss-Bonnet gravity

In this section we examine the case of Einstein-Maxwell theory with a slightly more general

Gauss-Bonnet gravity (i.e. with three different coupling constants). The action of this

theory can be written in d-dimensions as:

S =
1

16πGd

∫
dxd√−g

(
R + Λ − F 2

4
+ χ1Rαβγδ Rαβγδ − 4χ2Rµν Rµν + χ3R

2

)
. (5.1)

so that, when the entropy function mechanism is applied, the entropy of the extremal BH

for d = 4 takes the form:

S
(d=4)
GB = −2π

(
v2

2Λ2 + 2 v2 Λ + 2
)
χ1

G4 (v2 Λ + 1)
+

4π
(
2 + v2

2Λ2 + 2 v2 Λ
)
χ2

G4 (v2 Λ + 1)
,

− 2π v2
2Λ2χ3

G4 (v2 Λ + 1)
+

π v2

G4
. (5.2)

The solutions for the functions v1, e, and q are:

v1 =
v2

v2 Λ + 1
, e =

f0

v2 Λ + 1
, q = − f0

4G4
,

f0 =
(
−8χ1 v2

2Λ2 − 16χ1 v2 Λ + 16χ2v2
2Λ2 + 32χ2 v2Λ − 8χ3v2

2Λ2

−16χ3v2Λ + 2v2
2Λ + 4v2 − p2

) 1

2 . (5.3)

so that, if χ1 = χ2 = χ3 = χ, in (5.2), the solutions (3.8) is obtained (with χ = α).

However, if we want to find the general GB solutions (5.2) from the analytical solution (3.7)

(or vice versa), then the following constraints should be applied on both results:

χ1 − 2χ2 + χ3 = 0, χ1 = 2χ2 +
3b2

16
+ a2, χ3 = a2 −

b2

16
. (5.4)

Likewise, for d = 5 the resultant entropy is given by,

S
(d=5)
GB =

π2

(v2 + 4χ3)G5

(
− 8

√
v2χ

2
1+χ1

(
48χ2

√
v2−2

√
v2(4v2+16χ3+Λv2

2)
)
−64

√
v2χ

2
2 +

+4
√

v2( 20χ3 + Λv2
2 + 4v2)χ2 −

v
5

2

2

2
(4χ3Λ − 1)

)
. (5.5)

for the funtions v1, e and q:

v1 =
v2(v2 + 4χ3)

4v2 + Λv2
2 − 16χ2 + 12χ3 + 4χ1

, (5.6)

q = q(v2,Λ, χ1, χ2, χ3), e = e(v2,Λ, χ1, χ2, χ3) . (5.7)
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Also, the relation between the entropies (5.5) and (4.5) are given for the case when the

following constraints hold:

χ1 − 2χ2 + χ3 = 0, a2 =
3

5
(2χ2 − χ1), b2 = 8(χ1 − 2χ2) . (5.8)

If we take χ1 = χ2 = χ3 = χ, in (5.5), equation (4.6) is obtained. These last results

are interesting because they correspond to cases where the Riemann invariants cannot

reproduce the results of the generic GB theory, and this suggests that this theory will

always lack invariants to add. However, this situation can be understood if we notice that

it is a well-known fact that generic GB gravity in AdS gravity is, in general, inconsistent

by two essential points: the variational principle [28], and regularization problems, both

subjects are discussed extensively in [29–31].

6 Conclusion

We have calculated the entropy for extremal BHs in the cases d = 4 and d = 5, taking

into account higher derivative terms built from the complete set of Riemann invariants,

a task which, as far as we are aware, has not been accomplished before. Though we

remark that the exceptional Gauss-Bonnet’s cases were already done in [16]. We have

found the invariants of second degree and generalized these results so that the GB case can

be obtained as a particular case. We have also obtained the leading terms of approximation

for higher order invariants that could be interpreted as contributions of higher derivative

terms in some theories of gravity. The RN solutions are also contained in all the examined

cases. Therefore, the use of our set of solutions provides a concrete example showing that

the entropy function formalism works well, and its applications can be a less complicated

process in comparison to the use of Wald’s equation [24]-[27].
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